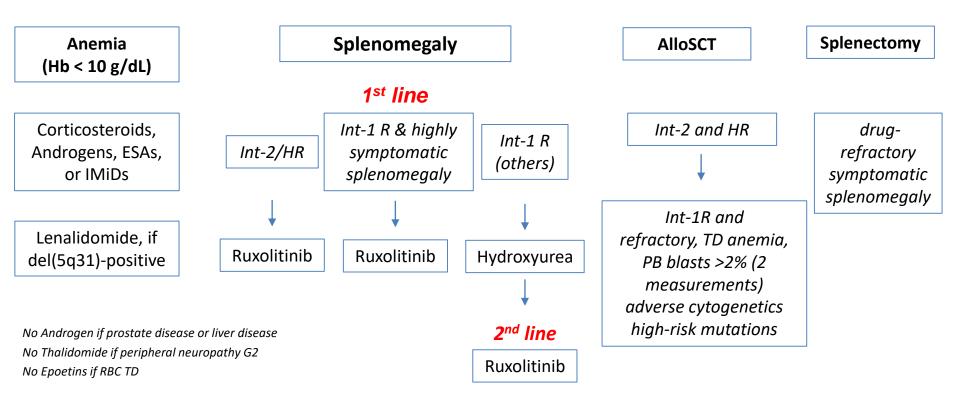
How I treat high risk myeloproliferative neoplasms

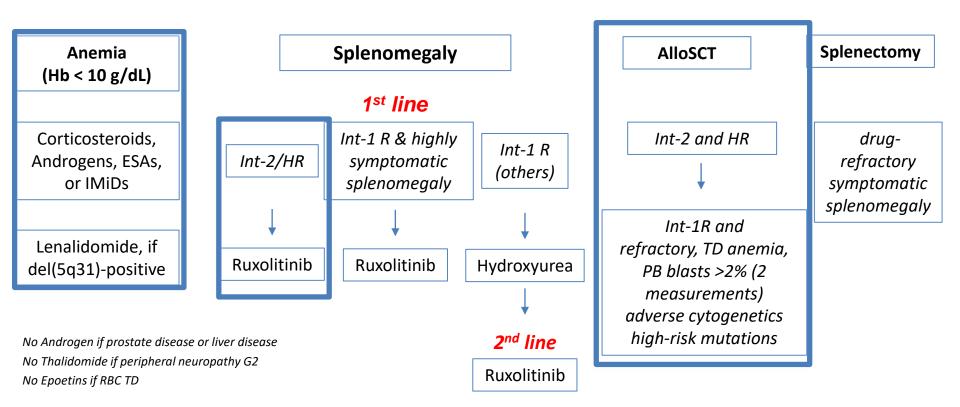


Francesco Passamonti Università dell'Insubria Varese - Italy

How I treat high risk MF

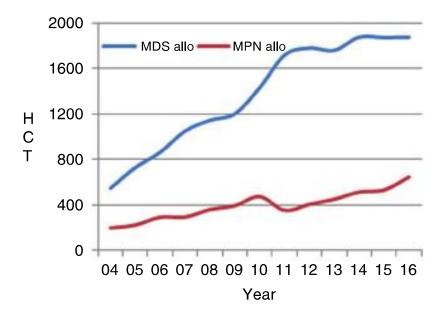
MF Treatment – ELN 2018 Guidelines

Tiziano Barbui¹ · Ayalew Tefferi² · Alessandro M. Vannucchi ³ · Francesco Passamonti⁴ · Richard T. Silver⁵ · Ronald Hoffman⁶ · Srdan Verstovsek⁷ · Ruben Mesa⁸ · Jean-Jacques Kiladjian⁹ · Rùdiger Hehlmann¹⁰ · Andreas Reiter¹⁰ · Francisco Cervantes¹¹ · Claire Harrison¹² · Mary Frances Mc Mullin¹³ · Hans Carl Hasselbalch¹⁴ Steffen Koschmieder¹⁵ · Monia Marchetti¹⁶ · Andrea Bacigalupo¹⁷ · Guido Finazzi¹ · Nicolaus Kroeger¹⁸ · Martin Griesshammer¹⁹ · Gunnar Birgegard²⁰ · Giovanni Barosi²¹

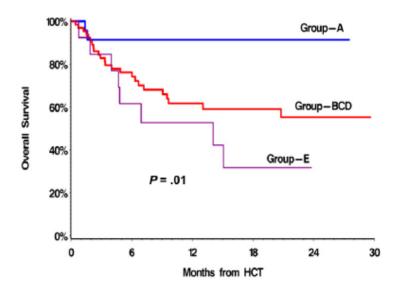


Hb, hemoglobin; ESAs, Erythropoiesis-stimulating agents; IMiDs, Immunomodulatory agents; Int-1, intermediate-1; PB, peripheral blood; TD, transfusion dependency

Leukemia 2018; 9(8):15–26.


MF Treatment – ELN 2018 Guidelines

Tiziano Barbui¹ · Ayalew Tefferi² · Alessandro M. Vannucchi ³ · Francesco Passamonti⁴ · Richard T. Silver⁵ · Ronald Hoffman⁶ · Srdan Verstovsek⁷ · Ruben Mesa⁸ · Jean-Jacques Kiladjian⁹ · Rüdiger Hehlmann¹⁰ · Andreas Reiter¹⁰ · Francisco Cervantes¹¹ · Claire Harrison¹² · Mary Frances Mc Mullin¹³ · Hans Carl Hasselbalch¹⁴ Steffen Koschmieder¹⁵ · Monia Marchetti¹⁶ · Andrea Bacigalupo¹⁷ · Guido Finazzi¹ · Nicolaus Kroeger¹⁸ · Martin Griesshammer¹⁹ · Gunnar Birgegard²⁰ · Giovanni Barosi²¹

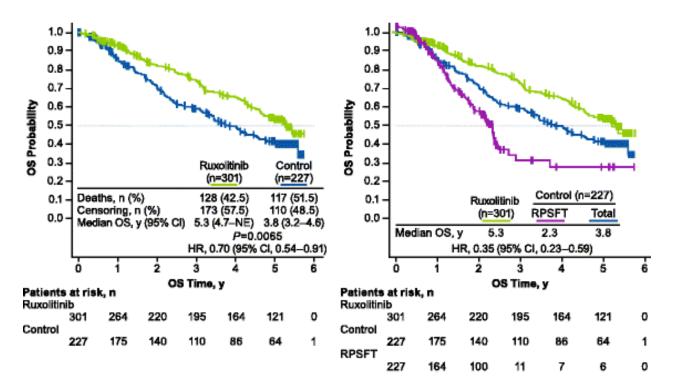


Stem cell transplant in the JAKi availability

SCT in MPNs (EBMT data)

OS post SCT per JAKi response

- Group A: (23) Clinical improvement
- Group B: (31) Stable disease; Group C: (15) Increase of blast, intolerance for AEs; Group D: (18) progression (new splenomegaly)
- Group E: (13) Blast phase


Passweg et al, BMT 2018; Shanavas et al, BBMT 2016

Ruxolitinib at 5 years follow-up (COMFORT-2)

- 53% of RUX achieved spleen response at any time
- The probability of maintaining a spleen response was 0.51 at 3 years and 0.48 at 5.0 years
- One-third of evaluable JAK2 V617F-positive patients had a >20% reduction in allele burden
- 16% improved fibrosis; 32% had stable fibrosis, 18% had a worsening at their last assessment
- AEs grade 3-4: anemia (22%), thrombocytopenia (15%), pneumonia (6%), general physical health deterioration (4%), and dyspnea (4%)

COMFORT-I and -II trials:

Overall survival analysis of 5-year pooled data

- Ruxolitinib resulted in 30% reduction in risk of death compared to control
- RPSFT (rank-preserving structural failure time, used in oncology to test OS after treatment switching) the OS advantage was more pronounced with ruxolitinib patients compared to control

OS, Overall survival; HR, hazard ratio; CI, confidence interval; ITT, intention to treat; RPSFT, rank-preserving structural failure time.

Old and new issues deserving considerations

• Anemia and RBC transfusions

- Almost all patients develop anemia
- Manageable, potentially starting at lower doses
- Occurrence of anemia on RUX does not reduce efficacy on spleen
- Occurrence of anemia on RUX is not predictive of shortened survival
- Limits of platelet count value at baseline > 50 x10⁹/L
- Infections
 - SIE and ELN guidelines did not suggest any restriction on RUX use
- Resistance
- No prevention of blast phase occurrence

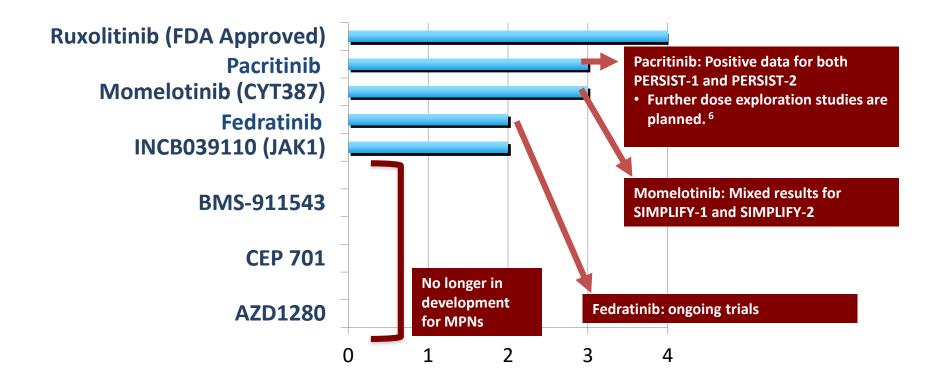
Passamonti & Maffioli Blood 2018; Verstovsek et al. N Engl J Med. 2012; 366(3):799–807; Gupta et al. Haematologica. 2016; 101(12):e482–e484; Marchetti et al. Leukemia. 2017;31(4):882-888

No clear benefit from RUX-based combinations

	RUXO + panobinostat (HDAC-i) (n = 34)	RUXO + sonidegib (SMO-i) (n = 27)	RUXO + buparlisib (Pi3K-i) (n = 11)	RUXO (mono) (n = 146)
SVR at Wk 24 – ALL	56.5%	44.4%	45.5%	31.9%
Thrombocytopenia ≥ Grade 3	29.4%	11%	22.7%	7.5%
Discontinuations due to AE	20.6%	18.5%	22.7%	8.2%
Additional AE's of concern	Diarrhea, Fatigue	CK increase	Mood disorders	

Comments on RUX combo vs RUX alone

- Incremental spleen size reduction
- No sign of disease modification
- Safety concerns


Harrison C et al, ASH 2015, Durrant et al; ASH 2014; Gupta et al, ASH 2015

Other ongoing RUX-based combinations

Class	Agent (combined with RUX)	Target(s)	Phase	Status	NCT.gov identifier
Epigenetic agents	Azacitidine	DNA methylation	2	Recruiting	NCT01787487
	Decitabine	DNA methylation	1/2	Ongoing, not recruiting	NCT02076191
	Pracinostat	HDAC	2	Ongoing, not recruiting	NCT02267278
	Panobinostat	HDAC	1	Ongoing, not recruiting	NCT01433445
	Panobinostat	HDAC	1/2	Ongoing, not recruiting	NCT01693601
Hedgehog pathway inhibitors	Sonidegib	SMO	1/2	Ongoing, not recruiting	NCT01787552
JAKis	Itacitinib	JAK1	2	Recruiting	NCT03144687
Immunomodulators	Thalidomide	Immunomodulation	2	Recruiting	NCT03069326
	Lenalidomide	Immunomodulation	2	Ongoing, not recruiting	NCT01375140
	Pomalidomide	Immunomodulation	1/2	Recruiting	NCT01644110
PI3K/AKT/mTOR pathway inhibitors	INCB050465	РІЗК-б 2		Recruiting	NCT02718300
	TGR-1202	ΡΙ3Κ-δ	1 Recruiting		NCT02493530
Other agents	Ribociclib/PIM447	CDK4/6 inhibitor Pan-PIM kinases	1	Ongoing, not recruiting	NCT02370706
	PU-H71	HSP90	1	Recruiting	NCT03373877
	Pevonedistat	NAE	1	Not yet recruiting	NCT03386214
	Sotatercept	ActRIIA ligands	2	Recruiting	NCT01712308
	Luspatercept	ActRIIB ligands	2	Recruiting	NCT03194542
	Peg-IFN α-2a		1/2	Recruiting	NCT02742324

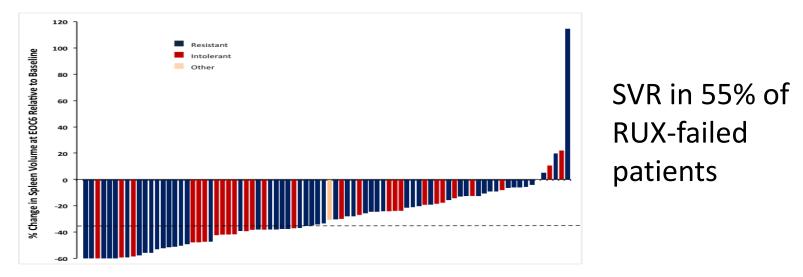
Passamonti & Maffioli Blood 2018.

Status of development of JAKi in MF

Verstovsek S, et al. *Blood.* 2016;128: Abstract 3110; Mesa RA, et al. *Lancet Haematol.* 2017;4(5):e225-e236; Mascarenhas J, et al. *Blood.* 2016;128(22). Abstract LBA-5; Mesa RA, et al. ASCO Annual Meeting, June 6, 2017; Abstract 7000.; Harrison CN, et al.. ASCO Annual Meeting, June 6, 2017; Abstract 7001; Bose P, Verstovsek S. *Blood.* 2017;130(2):115-125; Mascarenhas JO, et al. *Haematologica* 2017;102:327-35; Verstovsek S, et al. *Leukemia* 2017;31:393-402; Bose P, et al. *Exp Opin Invest Drugs* 2017;26(6):723-734

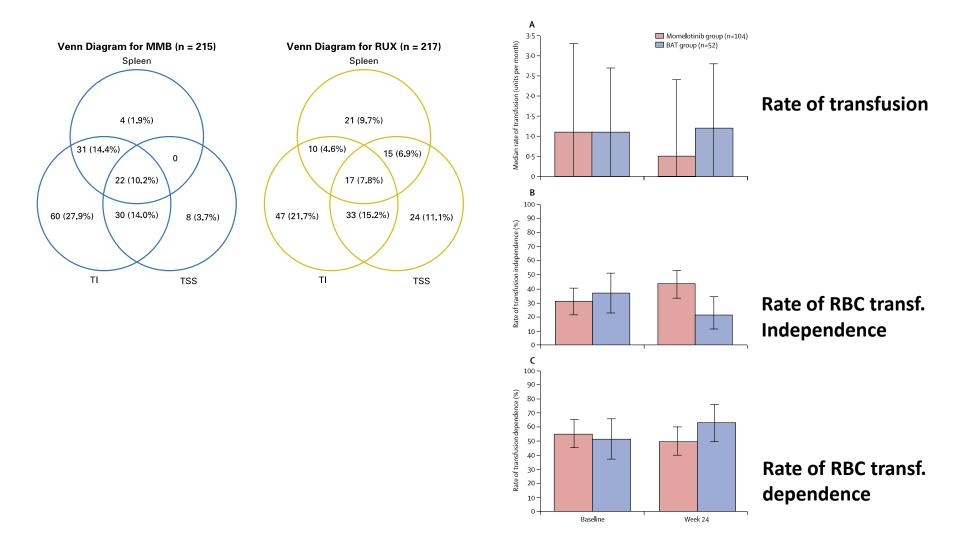
Pacritinib in RUX-naïve (PERSIST-1 vs BAT)

- SVR: 19% vs. 5%, irrespective of baseline PLT
- TSS response rates: 25% vs. 7%
- 26% of RBC-TD became RBC-TI with PAC
- Adverse events: diarrhea, nausea, and vomiting


Pacritinib also in RUX-pretreated (PERSIST-2 vs BAT)

- SVR: 18% (PAC) *vs.* 3% (BAT)
- TSS response rates: 25% (PAC) vs. 14% (BAT)
- AEs: gastrointestinal and hematologic; cardiac in 7% (PAC BID), 13% (PAC QD), and 9% (BAT); intracranial hemorrhage 1% (PAC QD)

Fedratinib in RUX-naïve (JAKARTA vs. PBO)


- SVR: 36% (FED 400 mg)
- Reduction in TSS ≥ 50%: 36% (FED 400 mg)
- G3/4 anemia, thrombocytopenia (43%, 17%); GI toxicity (G1/2); Werniche's encephalopathy in 4/97 pts (FED 500 mg)

Fedratinib in RUX-failure (JAKARTA-2)

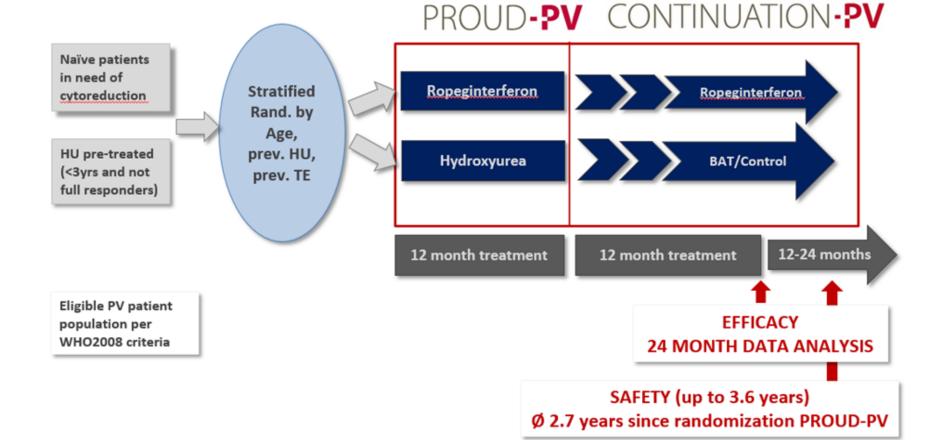
Pardanani et al. JAMA Oncol. 2015; *Harrison et al, ASH 2017; Harrison et al. Lancet Haematol. 2017

Momelotinib in RUX-*naïve* (SYMPLIFY-1, *vs.* RUX) and in also RUX-pretreated (SYMPLIFY-2, *vs.* BAT)

Mesa et al. JCO 2017; Harrison et al, Lancet Hematology 2017

Can we personalize the use of JAKis in MF patients?

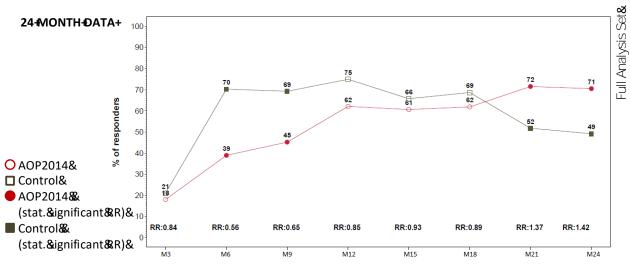
- No comparison among JAKi is feasible (no head to head comparison, moderate differences in baseline features (rate of SMF, entry platelet count, spleen size)
- All patients entering these trials were in advanced phases of MF and most received HU before enrollment
- RUX, FED seem very active on splenomegaly
- All JAKis tackle symptomatology (RUX most effective)
- PAC and MOME seem attractive for cytopenic patients
- FED is extremely active after RUX-failure


How I treat high risk PV

PV: the 2018 ELN recommendations

Polycythemia vera

- Phlebotomy to maintain the HCT <45% & daily LD aspirin
- Cytoreduction in high-risk, or hypermyeloproliferative, or phlebotomy poorly-tolerant patients
 - Either hydroxyurea or rIFNα is the first-line
 - Both rINFα and ruxolitinib are appropriate second-line therapies for intolerant or inadequately HU responding PV


PROUD-PV: a *non-inferiority* randomized trial comparing HU with ropegIFN in *naive* and <3y-treated PV patients

Gisslinger et al, ASH 2017 Abstract Number: 320

PROUD-PV: Efficacy results

	AOP2014	Control	RR [95% CI] (AOP2014/Control)&	P-value
Complete Hematologic Response at&/124&	70.5% (67/95)&	49.3% (33/67)&	1.42 & 1.09=1.87]&	0.0101&
CHR & Improvement in Disease Burden at& M24&	49.5% (47/95)&	36.6% (26/71)&	1.34 & 0.93=1.92]&	0.1183&
Partial Molecular Response at&/124&LOCF)&	68.1% (64/94)&	34.7% (26/75)&	1.85 & 1.33=2.56]&	0.0002&

Duration of treatment in months

Gisslinger et al, ASH 2017, Abstract Number: 320

PROUD-PV: Adverse events of special interest

Long/term&afety++ (up+to-8.6+years+of+treatment;+mean-2.7+years)+					
	AOP2014 (n=127)	Control (n=127)			
Endocrine disorders*	5 (3.9%)	1 (0.8%)			
Psychiatric disorders**	3 (2.4%)	1 (0.8%)			
Cardiac/Vascular disorders Stroke Thrombotic event Cardiac failure Atrial fibrillation Others ⁶	13 (10.2%) 2 (1.6%) 2 (1.6%) 0 (0.0%) 5 (3.9%) 4 (3.2%)	7 (5.5%) 0 (0.0%) 2 (1.6%) 2 (1.6%) 3 (2.4%) 0 (0.0%)			
Tissue disorders***	2 (1.6%)	0 (0.0%)			

* Autoimmune thyroiditis, Hypo-/Hyperthyroidism

** Anxiety, Depression, Mood altered

*** Rheumatoid arthritis, Sjogren's Syndrom

⁶ additional events reported: peripheral arterial occlusive disease (presented already in medical history), hematemesis, phlebitis

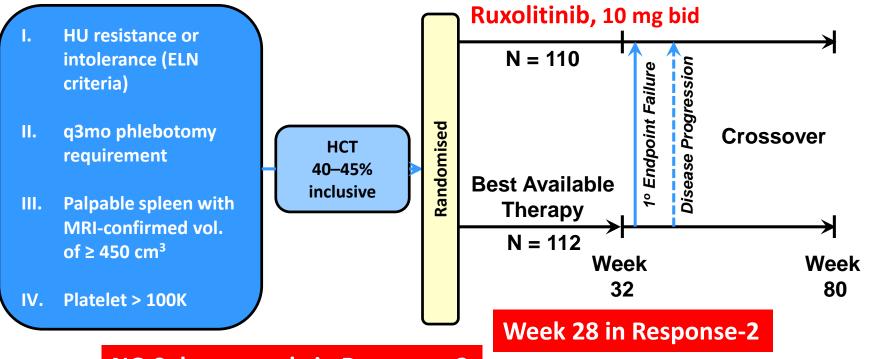
Long/term-Safety++ (up-to-8.6-years-of-treatment;-mean-2.7-years)+						
	AOP 2014 (n=127)	Control (n=127)				
Acute leukemia		2				
Basal cell carcinoma Malignant melanoma		2 1				
Adrenal neoplasm* Glioblastoma Spermatocytic seminoma	1 1 1					

* No additional information on type of neoplasm available

Gisslinger et al, ASH 2017, Abstract Number: 320

Prediction of prognosis in PV after diagnosis

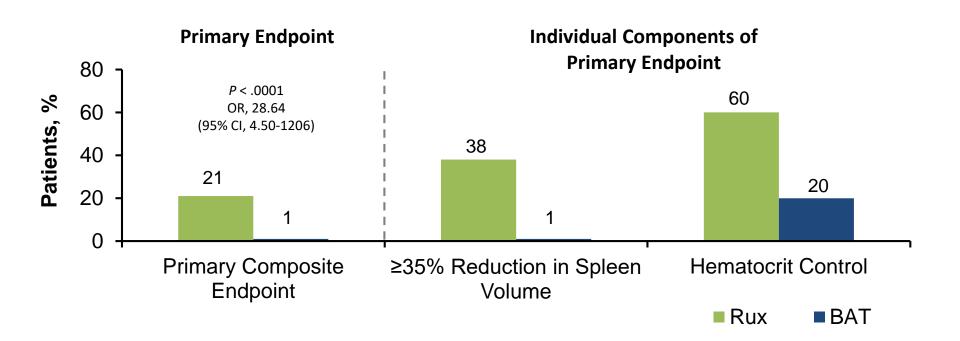
Bad factors:

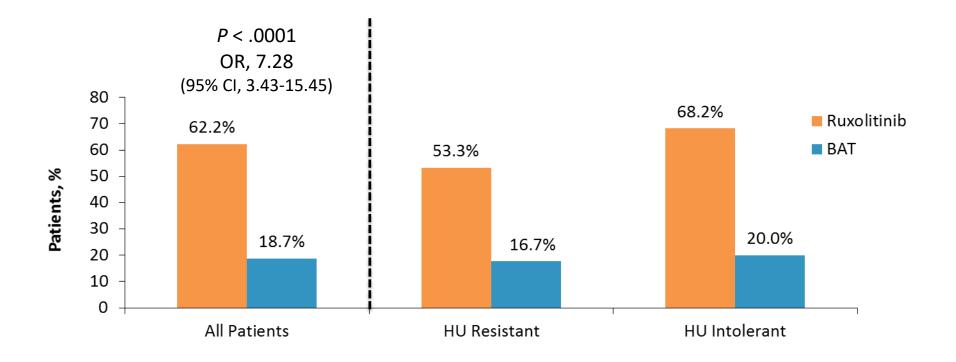

- Hematocrit values over 45%
- Inadequately controlled PV

Inadequately controlled PV

HU resistance & intolerance definition for studies The size of the problem in 890 patients

- Recorded in 137 patients (15.4%):
 - Need for phlebotomies (3.3%)
 - Uncontrolled myeloproliferation (1.6%)
 - Failure to reduce massive splenomegaly (0.8%)
 - Cytopenia at the lowest HU-dose to achieve response (1.7%)
 - Extra-haematological toxicity (9%)
- Cytopenia affected survival, progression to MF, AML
- Splenomegaly affected MF

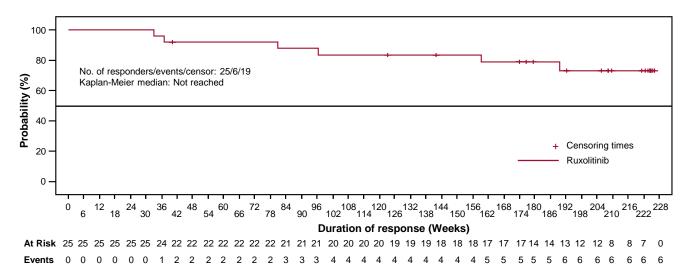

Ruxolitinib in PV: Phase 3 Trials RESPONSE and RESPONSE 2


NO Splenomegaly in Response-2

- Primary composite endpoint: haematocrit control (phlebotomy independence from week 8 to 32, with ≤ 1 phlebotomy post randomization) in the absence of phlebotomy and 35% reduction in spleen volume at week 32 (this latter absent in Response 2)
- Secondary endpoints: complete haematological remission at week 32 (absence of phlebotomy requirement, PLT count ≤ 400 x 10⁹/L, and WBC count ≤ 10 × 10⁹/L); % of patients who maintain primary endpoint response for ≥ 48 weeks; Symptom improvement (MPN-SAF diary) and quality of life (EORTC QLQ-C30; PGIC).

Vannucchi et al, N Engl J Med. 2015 Jan 29;372(5):426-35; Passamonti et al, Lancet Oncol. 2016 Dec 1. pii: S1470-2045(16)30558-7. **RESPONSE study: haematocrit control and 35% reduction in spleen volume at Week 32**

RESPONSE-2 study: haematocrit control at Week 28



 Significantly more patients randomized to ruxolitinib achieved Hct control without phlebotomy (primary endpoint) compared with those randomized to BAT

OR, odds ratio.

Passamonti et al, Lancet Oncol. 2016 Dec 1. pii: S1470-2045(16)30558-7.

4-y RESPONSE trial: RUX durability of primary response

- The K-M estimate of duration of maintaining primary response for 208 weeks (4 years) was 0.73 (95% CI: 0.49, 0.87).
 - The K-M estimates of duration of hematocrit control for 208 weeks was 0.73 (95% CI: 0.60, 0.83).
 - The K-M estimates of duration of at least 35% reduction in the spleen volume was 0.86 (95% CI: 0.61, 0.95).
- Median duration of primary response has not been reached.

Kiladjian et al, Abstract Number: 322

4-y RESPONSE trial: other adverse events of interest

(Nonmelanoma Skin Cancer Adjusted for Patient-Year Exposure)

	208-Week (4-Year) Analysis			80-Week Analysis				
	Ruxolitinib		Crossover		Ruxolitinib		Crossover	
n (Rate per 100	n = 110		n = 98		n = 110		n = 98	
Patient-Years of	Exposure	posure, Patient- Exposure, Patient-		Exposure, Patient-		Exposure, Patient-		
Exposure)	Years = 409		Years = 310		Years = 227.7		Years = 147.6	
Prior history of	No	Yes	No	Yes	No	Yes	No	Yes
Nonmelanoma Skin Cancer								
Total events	13 (3.6)	8 (18.6)	6 (2.1)	2 (9.5)	4 (2.0)	6 (24.2)	2 (1.4)	1 (10.6)
Basal cell carcinoma	10 (2.7)	7 (16.3)	4 (1.4)	1 (4.7)	3 (1.5)	5 (20.2)	1 (0.7)	1 (10.6)
Squamous cell carcinoma of skin	4 (1.1)	4 (9.3)	3 (1.0)	0	1 (0.5)	2 (8.1)	0	0
Bowen's disease	1 (0.3)	1 (2.3)	0	0	0	1 (4.0)	0	0
Carcinoma in situ of skin	0	2 (4.7)	0	0	0	1 (4.0)	0	0
Metastatic squamous cell carcinoma	0	2 (4.7)	0	0	0	1 (4.0)	0	0
Keratoacanthoma	1 (0.3)	0	0	0	0	0	0	0
Squamous cell carcinoma*	2 (0.5)	3 (7.0)	2 (0.7)	2 (9.5)	1 (0.5)	4 (16.1)	1 (0.7)	0

Conclusions

- Ruxolitinib is the standard new treatment for high risk MF with a 50% SVR representing the new bar of treatment goals in MF
- Fedratinib, pacritinib, momelotinib are under investigation and will enter market soon
- JAKi-based combination trial are under investigation hoping to extend clinical/molecular activity
- Peg-Interferon or hydroxyurea are for first line high risk PV, while ruxolitinib is the current second-line treatment in PV